
A Convex-Nonconvex Strategy for Grouped Variable
Selection

Xiaoqian Liu

Department of Statistics

North California State University

Collaborators:
Aaron Molstad, University of Florida

Eric Chi, Rice University

November 10, 2021

Xiaoqian Liu (NCSU) November 10, 2021 1 / 48



Overview

1 Convex-Nonconvex Penalization
Motivation
Generalized Minimax Concave (GMC) penalty

2 Group GMC for Grouped Variable Selection
The group GMC estimator
Algorithms for the group GMC model
Error bound for the group GMC estimator
Simulations and a real data application

3 Discussion

Xiaoqian Liu (NCSU) November 10, 2021 2 / 48



Introduction

The task of recovering a sparse representation is often formulated as

minimize F (β) =
1

2
∥y − Xβ∥22 + λψ(β), (1)

Statistics – sparse linear regression

- y ∈ Rn is the response vector
- X ∈ Rn×p is the design matrix
- β is the vector of coefficients

Signal processing – signal recovery/denoising

- y ∈ Rn is the vector of observations
- X ∈ Rn×p is a linear operator
- β is the underlying signal vector

ψ : Rp 7→ R is a penalty function promoting sparsity in β.
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Introduction

Convex penalization

Commonly used convex penalties:

ψ(β) = ∥β∥1
- Lasso (Tibshirani, 1996)
- Basis Pursuit (Chen and Donoho, 1994)

ψ(β) = α∥β∥1+(1− α)∥β∥22
- Elastic Net (Zou and Hastie, 2005)

Characteristics of convex penalties:

+ no suboptimal local minimizers

– underestimate large magnitude components
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Introduction

Nonconvex penalization

Commonly used nonconvex penalties:

the smoothly clipped absolute deviations (SCAD) penalty

- (Fan and Li, 2001)

the minimax concave penalty (MCP)

- (Zhang et al., 2010)

Characteristics of nonconvex penalties:

+ more accurate estimation

– existence of suboptimal local minimizers
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Introduction

Figure: Visualization of Lasso, SCAD and MCP (Adopted from Patrick Breheny’s
lecture on BIOS 7240).

Non-differentiability at the origin → sparsity

Xiaoqian Liu (NCSU) November 10, 2021 6 / 48



Introduction

Figure: Visualization of derivatives of Lasso, SCAD and MCP (Adopted from
Patrick Breheny’s lecture on BIOS 7240)

derivative → penalization rate (estimation bias)
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The GMC penalization

A convex-nonconvex strategy:

Design a nonconvex penalty but maintain the convexity of the problem.

The GMC penalty (Selesnick, 2017):

ψB(β) = ∥β∥1 − min
v∈Rp

{∥v∥1+
1

2
∥B(β − v)∥22}, (2)

where B ∈ Rn×p is a matrix parameter for ψB .
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The GMC penalization

Figure: Visualization of the GMC penalty in the univariate case (left) and the
multivariate case (right). Adopted from Selesnick (2017).
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The GMC penalization

The optimization problem:

minimize F (β) =
1

2
∥y − Xβ∥22 + λψB(β), (3)

maintains convex if
XTX ⪰ λBTB. (4)

(4) is the convexity-preserving condition for the GMC model (3).
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The GMC penalization

A key factor in GMC: the matrix parameter B

Functions of B:

Preserves the convexity of the model

Controls the degree of the convexity

Affects the computation of the optimization problem

Impacts the estimation/recovery performance
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The GMC penalization

An open question for the GMC penalization:

how to set the matrix parameter B?

An approach in (Selesnick, 2017):

B =
√
θ/λX , with θ ∈ (0, 1),

then λBTB = θXTX , which satisfies condition (4).
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Grouped variable selection

Consider the classical linear regression setting:

y = Xβ + ϵ

- y ∈ Rn is the response vector

- X ∈ Rn×p is the design matrix whose columns are p covariate
variables with natural group structures

- ϵ is a vector of noise variables with mean zero and variance σ2

grouped variable selection and coefficient estimation
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Grouped variable selection

Existing methods for grouped variables selection in linear regression:

Convex penalization
Group Lasso (Yuan and Lin, 2006) and its variants

β̂grLasso = argmin
β∈Rp

1

2n
∥y −

J∑
j=1

Xjβj∥22+λ
J∑

j=1

Kj∥βj∥2 (5)

- β = (βT
1 , ...,β

T
J )

T ∈ Rp with βj ∈ Rpj and
∑J

j=1 pj = p
- Xj is the submatrix of X whose columns correspond to the variables in
the j-th group

- Kjs are used to adjust for the group sizes, e.g. Kj =
√
pj

Nonconvex penalization
Group SCAD (Wang et al., 2007), Group MCP (Huang et al., 2012)
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The group GMC estimator

We define the group GMC penalty as

ϕB(β) =
J∑

j=1

Kj∥βj∥2 − min
v∈Rp


J∑

j=1

Kj∥vj∥2 +
1

2n
∥B(β − v)∥22

 (6)

- β = (βT
1 , ...,β

T
J )

T ∈ Rp

- v = (vT
1 , ..., v

T
J )T ∈ Rp

- For each j , βj , vj ∈ Rpj with
∑J

j=1 pj = p
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The group GMC estimator

The group GMC model:

argmin
β∈Rp

1

2n
∥y − Xβ∥22+λϕB(β), (7)

- ∥y − Xβ∥22= ∥y −
∑J

j=1 Xjβj∥22
- λ ≥ 0 is the tuning parameter, which represents the degree of
penalization

- B is a matrix parameter, which controls the concavity of the group
GMC penalty
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The group GMC estimator

The group GMC problem (7) is a convex optimization problem if

XTX ⪰ λBTB (8)

- convexity-preserving condition for group GMC

Xiaoqian Liu (NCSU) November 10, 2021 17 / 48



The group GMC estimator

Set matrix B for the group GMC:

λBTB = θXTX , θ ∈ [0, 1]. (9)

θ: the convexity-preserving parameter of the group GMC model

- θ = 0: group GMC → group Lasso
- θ = 1: a maximally nonconvex penalty
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The group GMC estimator

Relationship between the group GMC and the group MCP (Huang et al.,
2012):

Remark

The group GMC method is equivalent to the group MCP method when
BTB is diagonal and the diagonal elements are suitably designed. This
equivalence also holds for the GMC and MCP.
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The group GMC estimator

Properties of the solution path:

Theorem

Suppose XTX ≻ λBTB, then the solution path β⋆(λ) to the group GMC
problem (7) exists, is unique, and is continuous in λ.

Problem (7) is well-posed

Warm start when solving a sequence of problems over a grid of λ
values
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The group GMC estimator

Properties of the solution path:

Theorem

The group GMC problem (7) has a unique solution β⋆(λ) = 0 for all λ

greater than λ0 = maxj

{
∥XT

j y∥2
nKj

}
, where Xj and Kj are as defined in (5)

for j = 1, · · · , J.

A precise range of λ, [0, λ0], to sample the full dynamic range of the
coefficient estimation
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Algorithms for the group GMC model

Recast the optimization problem (7) as a saddle-point problem

min
β∈Rp

max
v∈Rp

f (β) + βTZv − g(v), (10)

where

f (β) =
1

2n
∥y − Xβ∥22+λ

J∑
j=1

Kj∥βj∥2 −
λ

2n
∥Bβ∥22,

g(v) =
λ

2n
∥Bv∥22 + λ

J∑
j=1

Kj∥vj∥2,

Z =
λ

n
BTB.

Primal-Dual Hybrid Gradient (PDHG) method
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Algorithms for the group GMC model

Algorithm 1 Basic PDHG steps for problem (10)

1: Set β0 ∈ Rp, v0 ∈ Rp, σk > 0, τk > 0
2: for k = 1 to K do
3: β̂k+1 = βk − τkZTvk
4: βk+1 = argminβ∈Rp f (β) + 1

2τk
∥β − β̂k+1∥22

5: v̂k+1 = vk + σkZ (2βk+1 − βk)
6: vk+1 = argminv∈Rp g(v) + 1

2σk
∥v − v̂k+1∥22

7: end for
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Algorithms for the group GMC model

Updating βk+1 and vk+1 using FASTA:

βk+1 = argmin
β∈Rp

f (β) +
1

2τk
∥β − β̂k+1∥22

= argmin
β∈Rp

{ 1

2n
∥y − Xβ∥22−

λ

2n
∥Bβ∥22 +

1

2τk
∥β − β̂k+1∥22

}
+ λ

J∑
j=1

Kj∥βj∥2

vk+1 = argmin
v∈Rp

g(v) +
1

2σk
∥v − v̂k+1∥22

= argmin
v∈Rp

{ λ
2n

∥Bv∥22 +
1

2σk
∥v − v̂k+1∥22

}
+ λ

J∑
j=1

Kj∥vj∥2
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Error bound for the group GMC estimator

Some definitions:

v⋆ = argmin
v∈Rp


J∑

j=1

Kj∥vj∥2 +
1

2n
∥B(β⋆ − v)∥22


S := {j : ∥β⋆

j ∥2 ̸= 0, j ∈ [J]} and Sc := [J] \ S

νj =

{
Kj + n−1∥[BTB]j ,·(β

⋆ − v⋆)∥2, j ∈ S
Kj − n−1∥[BTB]j ,·(β

⋆ − v⋆)∥2, j ∈ Sc

ν̄ := max
j∈S

νj and ν := min
k∈Sc

νk
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Error bound for the group GMC estimator

Conditions and assumptions:

X satisfies a “block-normalization” condition:

∥X·,j∥ ≤
√
n, j ∈ [J]

A1. (Subgaussian errors). The data are generated from (13) where
ϵ ∈ Rn has independent entries which are σ-subgaussian random
variables for 0 < σ <∞. That is, E(ϵi ) = 0 and for all t ∈ R,
E{exp(tϵi )} ≤ exp(t2σ2/2) for each i ∈ [n].

A2. (Convexity) The matrix B is chosen so that XTX ⪰ λBTB.

A3. (Sample size) The sample size n is sufficiently large so that
νk > 0 for all k ∈ Sc .
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Error bound for the group GMC estimator

Conditions and assumptions:

A4. (Restricted eigenvalue condition) For a fixed c > 1, define

Cn(S, ν, c) =∆ ∈ Rp : ∆ ̸= 0,
∑
k∈Sc

(
νk −

ν

c

)
∥∆k∥2 ≤

∑
j∈S

(
νj +

ν

c

)
∥∆j∥2

 .

We assume there exists a constant k > 0 such that for all n and p,

0 < k ≤ κB(S, c) := inf
∆∈Cn(S,ν,c)

∆T(XTX− λBTB)∆

2n∥∆∥22
.
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Error bound for the group GMC estimator

Theorem

(Error bound for group GMC) Let c > 1 and k1 > 0 be fixed constants. If
assumptions A1–A4 hold and

λ =
2cσ

ν

(
max
j∈[J]

√
pj
n

+

√
k1 log(J)

n

)
,

then with probability at least 1− 2 exp(−2k1 log(J)),

∥β̂(λ)−β⋆∥2 ≤
2cσ

κB(S, c)

(
ν̄

ν
+

1

c

){(
max
j∈[J]

√
|S|pj
n

)
+

√
|S|k1 log(J)

n

}
,

where β̂(λ) is the group GMC estimator obtained from (7).
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Error bound for the group GMC estimator

Same asymptotic error rate as the group Lasso estimator

Choose B such that κB(S, c) is large and ν̄/ν is small
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Error bound for the group GMC estimator

Theorem

(Error bound for GMC) Let c > 1 and k2 ∈ (0, 1) be fixed constants. Let
pj = 1 for j ∈ [p] so that S = {j : β⋆

j ̸= 0, j ∈ [p]}. If assumptions A1–A4

hold and λ = (cσ/ν)
√
2 log(p/k2)/n, then with probability at least 1−2k2

∥β̂(λ)− β⋆∥2 ≤
cσ

κB(S, c)

(
ν̄

ν
+

1

c

)√
2|S| log(p/k2)

n
,

where β̂(λ) is the corresponding GMC estimator.
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Simulation Experiments

We explore some simulation experiments based on the simulations in Yuan
and Lin (2006).

Models:

- an additive model including both categorical and continuous variables
- an ANOVA model with all two-way interactions

Factors of interest:

- signal-to-noise ratio (SNR) of the model
- correlation among groups
- problem dimension
- convexity-preserving parameter (for the group GMC)
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Simulation experiments

Data generation of the additive model:

Continuous covariates X1, · · · ,X20 are defined as Xi = Zi + cW

- Zi and W are independently sampled from N(0, 1)
- c is a constant controlling the correlation between Xi and Xj

X11, · · · ,X20 are trichotomized to 0, 1 or 2

- 0 if smaller than Φ−1( 13 )
- 1 if larger than Φ−1( 13 )
- 2 if in between
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Simulation experiments

Data generation of the additive model:

The true regression model is

y = X 3
3 + X 2

3 + X3 +
1

3
X 3
6 − X 2

6 +
2

3
X6 + 21(X11 = 0) + 1(X11 = 1) + ϵ

- 1(·) is the indicator function

- ϵ ∼ N(0, σ2)

- 50 covariate variables from 20 groups

Xiaoqian Liu (NCSU) November 10, 2021 33 / 48



Simulation experiments

Performance in three aspects:

Coefficient estimation

- SE = ∥β̂ − β∥22
Prediction performance

- prediction error = 1
n∥X β̂ − Xβ∥22

Support recovery

- F1 score =
2TP

2TP + FP + FN
- true positive (TP) and false positive (FP)

Estimation

β̂j ! = 0 β̂j = 0

Truth
βj ! = 0 TP FN

βj = 0 FP TN
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Simulation experiments

Case I: effect of the SNR
- uncorrelated groups (c = 0)
- problem dimension p = 50
- sample size n = 100
- SNR ∈ {1, 2, · · · , 9, 10, 15, 20}
- θ ∈ {0.2, 0.4, 0.6, 0.8, 1}
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Simulation experiments
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Simulation experiments

Case II: effect of the correlation among groups
- SNR = 10
- problem dimension p = 50
- sample size n = 100
- θ = 0.8
- correlation ρ = c2

1+c2 ∈ {0, 0.2, 0.5, 0.9}
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Simulation experiments
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Simulation experiments

Case III: effect of the problem dimension
- uncorrelated groups (c = 0)
- SNR = 10
- sample size n = 100
- θ = 0.8
- p ∈ {50, 200, 500}
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Simulation experiments
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Real data application

The birth weight data set investigated in Yuan and Lin (2006):

- risk factors associated with low rank infant birth weight

- 189 observations of one response variable (infant birth weight)

- eight explanatory variables (continuous and categorical)
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Real data application

We have 16 covariate variables from 8 groups.
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Real data application
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Real data application
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Discussion

Summary:

A group GMC method for grouped variable selection and coefficient
estimation in linear regression

Convexity preserving condition, relation to existing methods, and
properties of solution path

Algorithms for computing the solution path

Error bounds of the group GMC estimator, as well as the original
GMC estimator

Simulations and a real data application

Xiaoqian Liu (NCSU) November 10, 2021 45 / 48



Discussion

Future directions:

Guidance on setting the matrix parameter B
Extension to generalized linear models

Computation of the (group) GMC problem
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