Lecture 2

Xiaoqian Liu

1 Overview

In this lecture, we introduce the concept of convexity, including convex sets and some convexitypreserving operations.

2 Convex sets

A subset C of \mathcal{H} is **convex** if

- $\forall \alpha \in (0,1), \alpha C + (1-\alpha)C \subset C.$
- That is, $\forall \alpha \in (0,1), \forall x \in C, \forall y \in C, \alpha x + (1-\alpha)y \in C.$
- Or equivalently, $\forall x \in C, \forall y \in C, (x, y) \subset C$, where (x, y) denotes the segment between x and y.

Examples/counterexamples:

- A ball $B(x; \rho)$ is convex.
- Half space and affine space are convex.
- The union of two disjoint balls are not convex.

3 Convexity-preserving operations

• Let $(C_i)_{i\in I}$ be a family of convex subsets of \mathcal{H} , then $\cap_{i\in I}C_i$ is convex.

– unioon, complement are not in general

- Let $(C_i)_{i \in I}$ be a finite family of convex subsets of \mathcal{H} , and let $(\alpha_i)_{i \in I} \in \mathbb{R}$, then $\sum_{i \in I} \alpha_i C_i$ is convex.
- Let \mathcal{G} be a Euclidean space, and $L: \mathcal{H} \to \mathcal{G}$ be a linear operator. Let $C \in \mathcal{H}$ and $D \in \mathcal{G}$ be convex subsets. Then,

 $\begin{array}{l} - \ L(C) = \{Lx \mid x \in C\} \text{ is convex} \\ - \ L^{-1}(D) = \{x \in \mathcal{H} \mid Lx \in D\} \text{ is convex} \end{array}$

 $\textit{Proof: Take } x_1 \textit{ and } x_2 \textit{ in } \mathcal{H}, \, \alpha \in (0,1). \textit{ Set } y_1 = L x_1, \, y_2 = L x_2.$

i) Suppose that x_1 and x_2 are in C. Then $y_1 \in L(C)$ and $y_2 \in L(C)$, and

$$\alpha y_1 + (1 - \alpha)y_2 = \alpha L x_1 + (1 - \alpha)L x_2 = L(\alpha x_1 + (1 - \alpha)x_2) \in L(C)$$

by the convexity of C. Therefore, L(C) is convex.

ii) Suppose that y_1 and y_2 are in D. Then $Lx_1 \in D$ and $Lx_2 \in D$. By the convexity of D, we have

$$D \ni \alpha L x_1 + (1-\alpha)L x_2 = L(\alpha x_1 + (1-\alpha)x_2).$$

Therefore, $L(\alpha x_1+(1-\alpha)x_2)\in D$ and thus $L^{-1}(D)$ is convex.