Lecture 1

Xiaoqian Liu

1 Optimization

Optimization is the science of making better decisions in unclear environments.

— Patrick L. Combettes

2 Overview

In this lecture, we introduce the Euclidean space, some basic identities and inequalities, and some basic concepts based on Euclidean space.

3 Euclidean space

The **Euclidean space** \mathcal{H} is a real finite dimensional vector space equipped with a scalar product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$, $(x, y) \mapsto \langle x \mid y \rangle$.

• Properties of the scalar product

$$\begin{array}{l} - \ \forall (x,y) \in \mathcal{H}^2, \langle x \mid y \rangle = \langle y \mid x \rangle \\ - \ \forall \alpha \in \mathbb{R}, \forall (x,y,z) \in \mathcal{H}^3, \langle \alpha x + y \mid z \rangle = \alpha \langle x \mid z \rangle + \langle y \mid z \rangle \\ - \ \forall x \in \mathcal{H} \setminus \{0\}, \langle x \mid x \rangle > 0 \end{array}$$

A **norm** on \mathcal{H} is a function $\|\cdot\| \colon \mathcal{H} \to \mathbb{R}, x \mapsto \|x\|$ such that

(i)
$$\forall (x, y) \in \mathcal{H}^2, ||x + y|| \le ||x|| + ||y||$$

(ii)
$$\forall \alpha \in \mathbb{R}, \forall x \in \mathcal{H}, \|\alpha x\| = \alpha \|x\|$$

(iii)
$$\forall x \in \mathcal{H}, x = 0 \iff ||x|| = 0_{\mathcal{H}}$$

The **default norm** of \mathcal{H} is the one associated with the scalar product:

$$\forall x \in \mathcal{H}, \|x\| = \sqrt{\langle x \mid x \rangle},\tag{1}$$

which also gives rise to a distance

$$\forall (x,y) \in \mathcal{H}^2, d(x,y) = ||x-y|| = \sqrt{\langle x-y \mid x-y \rangle}. \tag{2}$$

4 Basic identities and inequalities

- Cauchy–Schwarz: $\forall (x,y) \in \mathcal{H}^2, |\langle x \mid y \rangle| \leq ||x|| ||y||$. Moreover, $|\langle x \mid y \rangle| = ||x|| ||y|| \iff \exists \alpha \in \mathbb{R}_+, x = \alpha y$
- $\forall (x,y) \in \mathcal{H}^2, \|x+y\|^2 = \|x\|^2 + 2\langle x \mid y \rangle + \|x\|^2$.
- Parallelogram identity: $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2|||y||^2$
- Polarization identity: $\langle x \mid y \rangle = \frac{1}{4} \left[\|x + y\|^2 \|x y\|^2 \right]$
- Let $\alpha \in \mathbb{R}$, then $\|\alpha x + (1-\alpha)y\|^2 = \alpha \|x\|^2 + (1-\alpha)\|y\|^2 \alpha(1-\alpha)\|x-y\|^2$
- $\langle x \mid y \rangle \le 0 \iff \forall \alpha \in [0, +\infty), \|x\| \le \|x \alpha y\| \iff \forall \alpha \in [0, 1], \|x\| \le \|x \alpha y\|$

5 Basic concepts

- Let $x \in \mathcal{H}$ and $\rho \in (0, +\infty)$, the **ball** with center x and radius ρ is $B(x; \rho) = \{y \in \mathcal{H} \mid ||x y|| \le \rho\}$.
- Let $C \in \mathcal{H}$, then C is an **open set** if $\forall x \in \mathcal{H}, \exists \rho \in (0, +\infty), B(x; \rho) \in C$. C is a **closed set** if $\mathcal{H} \setminus C$ is open.
- Take a sequence $(x_n)_{n\in\mathbb{N}}$ in \mathcal{H} and a point $x\in\mathcal{H}$, then x_n converges to x if $||x_n-x||\to 0$ as $n\to\infty$. In other words, $\forall \rho\in(0,\infty), \exists N\in\mathbb{N}, \forall n\in\mathbb{N}, n\geq N \Rightarrow x_n\in B(x;\rho)$.
- C is a closed set means that for every sequence $(x_n)_{n\in\mathbb{N}}$ in C that converges, say $x_n\to x$, then $x\in C$.

Ex. Let $\mathcal{H} = \mathbb{R}, C = (0,1), x_n = \frac{1}{1+n}$, then $x_n \to 0$ which is not in C, so C is not closed.

- A sequence $(x_n)_{n\in\mathbb{N}}$ in \mathcal{H} converges if and only if it is a **Cauchy sequence**: $||x_n-x_m||\to 0$, as $n,m\to\infty$.
- Operator
 - Let \mathcal{G} be an Euclidean space. The notation $T: \mathcal{H} \to \mathcal{G}$ means that the operator (also called mapping) T maps every point x in \mathcal{H} to a point Tx in \mathcal{G} .

- T is a linear operator if $\forall \alpha \in \mathbb{R}, \forall (x,y) \in \mathcal{H}^2, T(\alpha x + y) = \alpha Tx + Ty$.
- T is **continuous at** $x \in \mathcal{H}$ if there is a sequence $(x_n)_{n \in \mathbb{N}}$ in \mathcal{H} , $x_n \to x \Rightarrow Tx_n \to Tx$. T is **continuous** if this holds for every $x \in \mathcal{H}$.
- Let \mathbb{R} be the real line $(-\infty, +\infty)$ and $I \subset \mathbb{R}$
 - The **inifimum** of I is the greatest lower bound of I ($+\infty$ if $I = \emptyset$).
 - * A lower bound of I is a value $a \in \mathbb{R}$ such that $\forall x \in I, a \leq x$ and $\forall \epsilon > 0, \exists x \in I$ such that $x < a + \epsilon$.
 - The **supremum** of I is the lowest upper bound of I ($-\infty$ if $I = \emptyset$).
 - * A upper bound of I is a value $b \in \mathbb{R}$ such that $\forall x \in I, x \leq b$ and $\forall \epsilon > 0, \exists x \in I$ such that $x > b \epsilon$.

Eg.
$$\inf(0,1] = 0$$
, $\sup(0,1] = 1$.

- If $\inf I \in I$, it is called a **minimum**, and it is denoted by $\min I$.
- If $\sup I \in I$, it is called a **maximum**, and it is denoted by $\max I$.

Eg. Let $I = \{y \mid y = e^{-x}\}$, then $\inf I = 0$, $\arg \min_x e^{-x}$ does not exist since $0 \notin I$.

- Let C be a subset of \mathcal{H} , and let $f: \mathcal{H} \to [-\infty, +\infty]$, $x \mapsto f(x)$, then $f(C) = \{f(x) \mid x \in C\} \subset [-\infty, +\infty]$.
 - Notation: $\inf f(C) = \inf_{x \in C} f(x)$, $\sup f(C) = \sup_{x \in C} f(x)$
- Rules in $[-\infty, +\infty]$: x + y is defined in a natural way, but $(+\infty) (+\infty)$ is not defined. $\forall x \in (-\infty, +\infty], x + (+\infty) = +\infty$.
- Let $C \subset \mathcal{H}$,
 - C is a vector subspace if
 - i) $C \neq \emptyset$;
 - ii) $C + C = \{x + y \mid x \in C, y \in C\} \subset C;$
 - iii) $\forall \alpha \in \mathbb{R}, \alpha C = \{\alpha x \mid x \in C\} \subset C.$
 - C is an **affine subspace** if $\forall \alpha \in \mathbb{R}, \alpha C + (1 \alpha)C = C$.

Eg. Let $u \in \mathcal{H} \setminus \{0_{\mathcal{H}}\}$ and $\eta \in \mathbb{R}$, then $C = \{x \in \mathcal{H} \mid \langle x \mid u \rangle = \eta\}$ is called a hyperplane.

Eg. Let $u \in \mathcal{H} \setminus \{0_{\mathcal{H}}\}$ and $\eta \in \mathbb{R}$, then $C = \{x \in \mathcal{H} \mid \langle x \mid u \rangle \leq \eta\}$ is a closed affine hal-space, but not an affine space.

Figure 1: Illustration