Lecture 1

Xiaoqian Liu

1 Optimization

Optimization is the science of making better decisions in unclear environments.

- Patrick L. Combettes

2 Overview

In this lecture, we introduce the Euclidean space, some basic identities and inequalities, and some basic concepts based on Euclidean space.

3 Euclidean space

The Euclidean space \mathcal{H} is a real finite dimensional vector space equipped with a scalar product $\langle\cdot, \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R},(x, y) \mapsto\langle x \mid y\rangle$.

- Properties of the scalar product
- $\forall(x, y) \in \mathcal{H}^{2},\langle x \mid y\rangle=\langle y \mid x\rangle$
$-\forall \alpha \in \mathbb{R}, \forall(x, y, z) \in \mathcal{H}^{3},\langle\alpha x+y \mid z\rangle=\alpha\langle x \mid z\rangle+\langle y \mid z\rangle$
$-\forall x \in \mathcal{H} \backslash\{0\},\langle x \mid x\rangle>0$
A norm on \mathcal{H} is a function $\|\cdot\|: \mathcal{H} \rightarrow \mathbb{R}, x \mapsto\|x\|$ such that
(i) $\forall(x, y) \in \mathcal{H}^{2},\|x+y\| \leq\|x\|+\|y\|$
(ii) $\forall \alpha \in \mathbb{R}, \forall x \in \mathcal{H},\|\alpha x\|=\alpha\|x\|$
(iii) $\forall x \in \mathcal{H}, x=0 \Longleftrightarrow\|x\|=0_{\mathcal{H}}$

The default norm of \mathcal{H} is the one associated with the scalar product:

$$
\begin{equation*}
\forall x \in \mathcal{H},\|x\|=\sqrt{\langle x \mid x\rangle}, \tag{1}
\end{equation*}
$$

which also gives rise to a distance

$$
\begin{equation*}
\forall(x, y) \in \mathcal{H}^{2}, d(x, y)=\|x-y\|=\sqrt{\langle x-y \mid x-y\rangle} . \tag{2}
\end{equation*}
$$

4 Basic identities and inequalities

- Cauchy-Schwarz: $\forall(x, y) \in \mathcal{H}^{2},|\langle x \mid y\rangle| \leq\|x\|\|y\|$. Moreover, $|\langle x \mid y\rangle|=\|x\|\|y\| \Longleftrightarrow$ $\exists \alpha \in \mathbb{R}_{+}, x=\alpha y$
- $\forall(x, y) \in \mathcal{H}^{2},\|x+y\|^{2}=\|x\|^{2}+2\langle x \mid y\rangle+\|x\|^{2}$.
- Parallelogram identity: $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\| \| y \|^{2}$
- Polarization identity: $\langle x \mid y\rangle=\frac{1}{4}\left[\|x+y\|^{2}-\|x-y\|^{2}\right]$
- Let $\alpha \in \mathbb{R}$, then $\|\alpha x+(1-\alpha) y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}-\alpha(1-\alpha)\|x-y\|^{2}$
- $\langle x \mid y\rangle \leq 0 \Longleftrightarrow \forall \alpha \in[0,+\infty),\|x\| \leq\|x-\alpha y\| \Leftrightarrow \forall \alpha \in[0,1],\|x\| \leq\|x-\alpha y\|$

5 Basic concepts

- Let $x \in \mathcal{H}$ and $\rho \in(0,+\infty)$, the ball with center x and radius ρ is $B(x ; \rho)=\{y \in \mathcal{H} \mid$ $\|x-y\| \leq \rho\}$.
- Let $C \in \mathcal{H}$, then C is an open set if $\forall x \in \mathcal{H}, \exists \rho \in(0,+\infty), B(x ; \rho) \in C . C$ is a closed set if $\mathcal{H} \backslash C$ is open.
- Take a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H} and a point $x \in \mathcal{H}$, then x_{n} converges to x if $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty$. In other words, $\forall \rho \in(0, \infty), \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow x_{n} \in B(x ; \rho)$.
- C is a closed set means that for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in C that converges, say $x_{n} \rightarrow x$, then $x \in C$.

Ex. Let $\mathcal{H}=\mathbb{R}, C=(0,1), x_{n}=\frac{1}{1+n}$, then $x_{n} \rightarrow 0$ which is not in C, so C is not closed.

- A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{H} converges if and only if it is a Cauchy sequence: $\left\|x_{n}-x_{m}\right\| \rightarrow$ 0 , as $n, m \rightarrow \infty$.
- Operator
- Let \mathcal{G} be an Euclidean space. The notation $T: \mathcal{H} \rightarrow \mathcal{G}$ means that the operator (also called mapping) T maps every point x in \mathcal{H} to a point $T x$ in \mathcal{G}.
- T is a linear operator if $\forall \alpha \in \mathbb{R}, \forall(x, y) \in \mathcal{H}^{2}, T(\alpha x+y)=\alpha T x+T y$.
$-T$ is continuous at $x \in \mathcal{H}$ if there is a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{H}, x_{n} \rightarrow x \Rightarrow T x_{n} \rightarrow$ $T x . T$ is continuous if this holds for every $x \in \mathcal{H}$.
- Let \mathbb{R} be the real line $(-\infty,+\infty)$ and $I \subset \mathbb{R}$
- The inifimum of I is the greatest lower bound of $I(+\infty$ if $I=\emptyset)$.
* A lower bound of I is a value $a \in \mathbb{R}$ such that $\forall x \in I, a \leq x$ and $\forall \epsilon>0, \exists x \in I$ such that $x<a+\epsilon$.
- The supremum of I is the lowest upper bound of $I(-\infty$ if $I=\emptyset)$.
* A upper bound of I is a value $b \in \mathbb{R}$ such that $\forall x \in I, x \leq b$ and $\forall \epsilon>0, \exists x \in I$ such that $x>b-\epsilon$.

Eg. $\inf (0,1]=0, \sup (0,1]=1$.

- If $\inf I \in I$, it is called a minimum, and it is denoted by $\min I$.
- If $\sup I \in I$, it is called a maximum, and it is denoted by max I.

Eg. Let $I=\left\{y \mid y=e^{-x}\right\}$, then $\inf I=0, \arg \min _{x} e^{-x}$ does not exist since $0 \notin I$.

- Let C be a subset of \mathcal{H}, and let $f: \mathcal{H} \rightarrow[-\infty,+\infty], x \mapsto f(x)$, then $f(C)=\{f(x) \mid$ $x \in C\} \subset[-\infty,+\infty]$.
- Notation: $\inf f(C)=\inf _{x \in C} f(x), \sup f(C)=\sup _{x \in C} f(x)$
- Rules in $[-\infty,+\infty]: x+y$ is defined in a natural way, but $(+\infty)-(+\infty)$ is not defined. $\forall x \in(-\infty,+\infty], x+(+\infty)=+\infty$.
- Let $C \subset \mathcal{H}$,
- C is a vector subspace if
i) $C \neq \emptyset$;
ii) $C+C=\{x+y \mid x \in C, y \in C\} \subset C$;
iii) $\forall \alpha \in \mathbb{R}, \alpha C=\{\alpha x \mid x \in C\} \subset C$.
$-C$ is an affine subspace if $\forall \alpha \in \mathbb{R}, \alpha C+(1-\alpha) C=C$.
Eg. Let $u \in \mathcal{H} \backslash\left\{0_{\mathcal{H}}\right\}$ and $\eta \in \mathbb{R}$, then $C=\{x \in \mathcal{H} \mid\langle x \mid u\rangle=\eta\}$ is called a hyperplane.
Eg. Let $u \in \mathcal{H} \backslash\left\{0_{\mathcal{H}}\right\}$ and $\eta \in \mathbb{R}$, then $C=\{x \in \mathcal{H} \mid\langle x \mid u\rangle \leq \eta\}$ is a closed affine hal-space, but not an affine space.

Figure 1: Illustration

