A Convex-Nonconvex Strategy for Grouped Variable Selection

Xiaoqian Liu

UT MD Anderson Cancer Center

Collaborators: Aaron Molstad, University of Florida Eric Chi, Rice University

NESS, June 6, 2023

Convex-Nonconvex Penalization

- Motivation
- Generalized Minimax Concave (GMC) penalty

Group GMC for Grouped Variable Selection

- The group GMC estimator
- Algorithms for the group GMC model
- Error bound for the group GMC estimator
- Simulations and a real data application

3 Discussion

Estimate a sparse vector:

minimize
$$m{F}(m{eta}) = rac{1}{2} \|m{y} - m{X}m{eta}\|_2^2 + \lambda\psi(m{eta})$$

• Statistics – penalized linear regression

- $\mathbf{y} \in \mathbb{R}^n$: response
- $\boldsymbol{X} \in \mathbb{R}^{n imes p}$: design matrix
- $oldsymbol{eta} \in \mathbb{R}^{
 ho}$: vector of coefficients
- Signal processing signal recovery/denoising
 - $\mathbf{y} \in \mathbb{R}^n$: vector of observations
 - $\boldsymbol{X} \in \mathbb{R}^{n \times p}$: linear operator
 - $\boldsymbol{eta} \in \mathbb{R}^{p}$: signal vector

• $\psi : \mathbb{R}^{p} \mapsto \mathbb{R}$ – penalty function promoting sparsity in β .

(1)

Convex penalization

- Examples: Lasso ($\psi(m{eta}) = \|m{eta}\|_1$, Tibshirani (1996)) and its variants
- Pros: no suboptimal local minimizers
- Cons: underestimation of large magnitude components

Nonconvex penalization

- Examples: SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010)
- Pros: more accurate estimation
- Cons: existence of suboptimal local minimizers

Figure: Visualization of Lasso, SCAD and MCP (Adopted from Patrick Breheny's lecture on BIOS 7240).

 $\bullet\,$ non-differentiability at the origin $\rightarrow\,$ sparsity

Xiaoqian Liu (MDACC)

Introduction

Figure: Visualization of derivatives of Lasso, SCAD and MCP (Adopted from Patrick Breheny's lecture on BIOS 7240)

• derivative \rightarrow penalization rate (estimation bias)

Xiaoqian Liu (MDACC)

A convex-nonconvex strategy:

Design a nonconvex penalty but maintain the convexity of the problem.

The generalized minimax concave (GMC) penalty (Selesnick, 2017):

$$\psi_{\boldsymbol{B}}(\boldsymbol{\beta}) = \|\boldsymbol{\beta}\|_{1} - \min_{\boldsymbol{\nu} \in \mathbb{R}^{p}} \{\|\boldsymbol{\nu}\|_{1} + \frac{1}{2} \|\boldsymbol{B}(\boldsymbol{\beta} - \boldsymbol{\nu})\|_{2}^{2} \}, \qquad (2)$$
$$= L_{1} \text{ norm - its generalized infimal convolution}$$

where $\boldsymbol{B} \in \mathbb{R}^{n \times p}$ is a matrix parameter.

The GMC penalization

Figure: Visualization of the GMC penalty in the univariate case (left) and the multivariate case (right). Adopted from Selesnick (2017).

The optimization problem

minimize
$$F(\boldsymbol{\beta}) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \psi_{\boldsymbol{B}}(\boldsymbol{\beta})$$
 (3)

maintains convex if

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} \succeq \lambda \boldsymbol{B}^{\mathsf{T}}\boldsymbol{B}.$$
(4)

• Convexity-preserving condition for the GMC model (3)

• An open question: How to set **B**?

$$oldsymbol{B}=\sqrt{lpha/\lambda}oldsymbol{X}, \hspace{0.2cm} ext{with} \hspace{0.2cm} lpha\in(0,1),$$

The classical linear regression setting:

$$oldsymbol{y} = oldsymbol{X}oldsymbol{eta} + oldsymbol{\epsilon}$$

- $\mathbf{y} \in \mathbb{R}^n$: response vector
- X ∈ ℝ^{n×p}: covariate variables with natural group structures e.g. categorical data analysis
- $\boldsymbol{\epsilon} \in \mathbb{R}^n$: vector of noise variables with mean 0 and variance σ^2

grouped variable selection & coefficient estimation

 Convex penalization Group Lasso (Yuan and Lin, 2006) and its variants

$$\hat{\boldsymbol{\beta}}_{\text{grLasso}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\arg\min} \frac{1}{2n} \| \boldsymbol{y} - \sum_{j=1}^{J} \boldsymbol{X}_{j} \boldsymbol{\beta}_{j} \|_{2}^{2} + \lambda \sum_{j=1}^{J} \boldsymbol{K}_{j} \| \boldsymbol{\beta}_{j} \|_{2}$$
(5)

-
$$oldsymbol{eta} = (oldsymbol{eta}_1^{\mathsf{T}},...,oldsymbol{eta}_J^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{p}$$
 with $oldsymbol{eta}_j \in \mathbb{R}^{p_j}$

- K_j s: adjusting for the group sizes, e.g. $K_j = \sqrt{p_j}$

 Nonconvex penalization Group SCAD (Wang et al., 2007) Group MCP (Huang et al., 2012) The group GMC penalty (Liu et al., 2021):

$$\phi_{\boldsymbol{B}}(\boldsymbol{\beta}) = \sum_{j=1}^{J} K_{j} \|\boldsymbol{\beta}_{j}\|_{2} - \min_{\boldsymbol{v} \in \mathbb{R}^{p}} \left\{ \sum_{j=1}^{J} K_{j} \|\boldsymbol{v}_{j}\|_{2} + \frac{1}{2n} \|\boldsymbol{B}(\boldsymbol{\beta} - \boldsymbol{v})\|_{2}^{2} \right\}$$
(6)
= group Lasso – its generalized infimal convolution

-
$$\boldsymbol{\beta} = (\boldsymbol{\beta}_1^T, ..., \boldsymbol{\beta}_J^T)^T \in \mathbb{R}^p$$

- $\boldsymbol{v} = (\boldsymbol{v}_1^T, ..., \boldsymbol{v}_J^T)^T \in \mathbb{R}^p$

- For each
$$j, \, oldsymbol{eta}_j \in \mathbb{R}^{p_j}, oldsymbol{v}_j \in \mathbb{R}^{p_j}$$

æ

The group GMC model:

$$\underset{\boldsymbol{\beta}\in\mathbb{R}^{p}}{\arg\min}\frac{1}{2n}\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2}+\lambda\phi_{\boldsymbol{B}}(\boldsymbol{\beta}),\tag{7}$$

• Convexity-preserving condition

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} \succeq \lambda \boldsymbol{B}^{\mathsf{T}}\boldsymbol{B}$$
(8)

• Set **B** by

$$\lambda \boldsymbol{B}^{\mathsf{T}} \boldsymbol{B} = \alpha \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \text{ with } \alpha \in [0, 1]$$

• α : convexity-preserving parameter

Relations between group GMC and existing methods:

- $\mathbf{B} = \mathbf{O} \ (\alpha = 0)$: group GMC \Leftrightarrow group Lasso
- $\mathbf{B}^{\mathsf{T}}\mathbf{B}$ is diagonal: group GMC \Leftrightarrow group MCP

Algorithms for the group GMC model

Recast problem (7) as a saddle-point problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \max_{\boldsymbol{\nu} \in \mathbb{R}^{p}} f(\boldsymbol{\beta}) + \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{Z} \boldsymbol{\nu} - g(\boldsymbol{\nu}), \tag{9}$$

where

$$f(\boldsymbol{\beta}) = \frac{1}{2n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \sum_{j=1}^J K_j \|\boldsymbol{\beta}_j\|_2 - \frac{\lambda}{2n} \|\boldsymbol{B}\boldsymbol{\beta}\|_2^2,$$
$$g(\boldsymbol{v}) = \frac{\lambda}{2n} \|\boldsymbol{B}\boldsymbol{v}\|_2^2 + \lambda \sum_{j=1}^J K_j \|\boldsymbol{v}_j\|_2,$$
$$\boldsymbol{Z} = \frac{\lambda}{n} \boldsymbol{B}^{\mathsf{T}} \boldsymbol{B}.$$

• Primal-Dual Hybrid Gradient (PDHG) method (Goldstein et al., 2013, 2015a)

Algorithm 1 Basic PDHG steps for problem (10)

1: Set
$$\beta_0 \in \mathbb{R}^p$$
, $\mathbf{v}_0 \in \mathbb{R}^p$, $\sigma_k > 0$, $\tau_k > 0$
2: for $k = 1$ to K do
3: $\hat{\beta}_{k+1} = \beta_k - \tau_k \mathbf{Z}^T \mathbf{v}_k$
4: $\beta_{k+1} = \arg\min_{\beta \in \mathbb{R}^p} f(\beta) + \frac{1}{2\tau_k} \|\beta - \hat{\beta}_{k+1}\|_2^2$
5: $\hat{\mathbf{v}}_{k+1} = \mathbf{v}_k + \sigma_k \mathbf{Z} (2\beta_{k+1} - \beta_k)$
6: $\mathbf{v}_{k+1} = \arg\min_{\mathbf{v} \in \mathbb{R}^p} g(\mathbf{v}) + \frac{1}{2\sigma_k} \|\mathbf{v} - \hat{\mathbf{v}}_{k+1}\|_2^2$
7: end for

э

Algorithms for the group GMC model

Updating β_{k+1} and \boldsymbol{v}_{k+1} :

$$\beta_{k+1} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_{2}^{2} - \frac{\lambda}{2n} \| \boldsymbol{B} \boldsymbol{\beta} \|_{2}^{2} + \frac{1}{2\tau_{k}} \| \boldsymbol{\beta} - \hat{\boldsymbol{\beta}}_{k+1} \|_{2}^{2} \right\}$$
$$+ \lambda \sum_{j=1}^{J} K_{j} \| \boldsymbol{\beta}_{j} \|_{2}$$
$$\boldsymbol{v}_{k+1} = \underset{\boldsymbol{v} \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{\lambda}{2n} \| \boldsymbol{B} \boldsymbol{v} \|_{2}^{2} + \frac{1}{2\sigma_{k}} \| \boldsymbol{v} - \hat{\boldsymbol{v}}_{k+1} \|_{2}^{2} \right\} + \lambda \sum_{j=1}^{J} K_{j} \| \boldsymbol{v}_{j} \|_{2}$$

- group Lasso penalized problems
- Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) (Goldstein et al., 2014, 2015b)

Some definitions:

•
$$\mathbf{v}^{\star} = \operatorname*{argmin}_{\mathbf{v} \in \mathbb{R}^{p}} \left\{ \sum_{j=1}^{J} K_{j} \|\mathbf{v}_{j}\|_{2} + \frac{1}{2n} \|\mathbf{B}(\boldsymbol{\beta}^{\star} - \mathbf{v})\|_{2}^{2} \right\}$$

• $\mathcal{S} := \{j : \|\boldsymbol{\beta}_{j}^{\star}\|_{2} \neq 0, j \in [J]\} \text{ and } \mathcal{S}^{c} := [J] \setminus \mathcal{S}$
• $\nu_{j} = \left\{ \begin{array}{c} K_{j} + n^{-1} \|[\mathbf{B}^{\mathsf{T}}\mathbf{B}]_{j,\cdot}(\boldsymbol{\beta}^{\star} - \mathbf{v}^{\star})\|_{2}, \quad j \in \mathcal{S}\\ K_{j} - n^{-1} \|[\mathbf{B}^{\mathsf{T}}\mathbf{B}]_{j,\cdot}(\boldsymbol{\beta}^{\star} - \mathbf{v}^{\star})\|_{2}, \quad j \in \mathcal{S}^{c} \end{array} \right.$
• $\bar{\nu} := \max_{j \in \mathcal{S}} \nu_{j} \text{ and } \underline{\nu} := \min_{k \in \mathcal{S}^{c}} \nu_{k}$

э

Conditions and assumptions:

• X satisfies a "block-normalization" condition:

$$\|\mathbf{X}_{\cdot,j}\| \leq \sqrt{n}, \ j \in [J]$$

- A1. (Subgaussian errors). The data are generated from (10) where ϵ ∈ ℝⁿ has independent entries which are σ-subgaussian random variables for 0 < σ < ∞. That is, E(ε_i) = 0 and for all t ∈ ℝ, E{exp(tε_i)} ≤ exp(t²σ²/2) for each i ∈ [n].
- A2. (Convexity) The matrix **B** is chosen so that $\mathbf{X}^{\mathsf{T}}\mathbf{X} \succeq \lambda \mathbf{B}^{\mathsf{T}}\mathbf{B}$.
- A3. (Sample size) The sample size n is sufficiently large such that there exists a constant ξ where <u>ν</u> ≥ ξ > 0.

Conditions and assumptions:

• A4. (Restricted eigenvalue condition) For a fixed c > 1, define

$$\mathbb{C}_n(\mathcal{S},\nu,c) = \left\{ \mathbf{\Delta} \in \mathbb{R}^p : \mathbf{\Delta} \neq \mathbf{0}, \sum_{k \in \mathcal{S}^c} \left(\nu_k - \frac{\xi}{c} \right) \|\mathbf{\Delta}_k\|_2 \le \sum_{j \in \mathcal{S}} \left(\nu_j + \frac{\xi}{c} \right) \|\mathbf{\Delta}_j\|_2 \right\}$$

We assume there exists a constant k > 0 such that for all n and p,

$$0 < k \leq \kappa_{\mathbf{B}}(\mathcal{S}, c) = \inf_{\mathbf{\Delta} \in \mathbb{C}_{n}(\mathcal{S}, \nu, c)} \frac{\mathbf{\Delta}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X} - \lambda \mathbf{B}^{\mathsf{T}}\mathbf{B})\mathbf{\Delta}}{2n\|\mathbf{\Delta}\|_{2}^{2}}$$

Theorem (Error bound for group GMC)

Let c > 1 and $k_1 > 1$ be fixed constants. If assumptions A1–A4 hold and

$$\lambda = \frac{4c\sigma}{\xi} \left(\max_{j \in [J]} \sqrt{\frac{p_j}{n}} + \sqrt{\frac{k_1 \log(J)}{n}} \right),$$

then with probability at least $1 - 2 \exp\{-(k_1 - 1) \log(J)\}$,

$$\|\hat{\boldsymbol{\beta}}(\lambda) - \boldsymbol{\beta}^{\star}\|_{2} \leq \frac{4c\sigma}{\kappa_{\mathsf{B}}(\mathcal{S},c)} \left(\frac{\bar{\nu}}{\xi} + \frac{1}{c}\right) \left\{ \left(\max_{j \in [J]} \sqrt{\frac{|\mathcal{S}|\boldsymbol{p}_{j}}{n}}\right) + \sqrt{\frac{|\mathcal{S}|\boldsymbol{k}_{1}\log(J)}{n}} \right\}$$

where $\hat{\beta}(\lambda)$ is the group GMC estimator obtained from (7).

イロト イヨト イヨト ・

Theorem (Error bound for GMC)

Let c > 1 and $k_2 \in (0, 1/2)$ be fixed constants. Let $p_j = 1$ for $j \in [p]$ so that $S = \{j : \beta_j^* \neq 0, j \in [p]\}$. If assumptions A1–A4 hold and $\lambda = (c\sigma/\xi)\sqrt{2\log(p/k_2)/n}$, then with probability at least $1 - 2k_2$

$$\|\hat{\boldsymbol{eta}}(\lambda) - \boldsymbol{eta}^{\star}\|_{2} \leq rac{c\sigma}{\kappa_{\mathbf{B}}(\mathcal{S},c)} \left(rac{ar{
u}}{\xi} + rac{1}{c}\right) \sqrt{rac{2|\mathcal{S}|\log(p/k_{2})}{n}}$$

where $\hat{\beta}(\lambda)$ is the corresponding GMC estimator.

く 白 ト く ヨ ト く ヨ ト

Data generation of the ANOVA model:

- Z_1, Z_2, Z_3 and Z_4 from a centered multivariate normal distribution - $Cov(Z_i, Z_j) = \rho^{|i-j|}$
- Z_1, \cdots, Z_4 are trichotomized to 0,1 or 2
 - 0 if smaller than $\Phi^{-1}(\frac{1}{3})$, 1 if larger than $\Phi^{-1}(\frac{1}{3})$, and 0 if in between
- 32 covariate variables from 10 groups
- True regression model

$$\begin{split} y &= 3\mathbb{1}(Z_1 = 1) + 2\mathbb{1}(Z_1 = 0) + 3\mathbb{1}(Z_2 = 1) + 2\mathbb{1}(Z_2 = 0) + \\ &\qquad \mathbb{1}(Z_1 = 1, Z_2 = 1) + \mathbb{1}(Z_1 = 1, Z_2 = 0) + \\ &\qquad 2\mathbb{1}(Z_1 = 0, Z_2 = 1) + 2.5\mathbb{1}(Z_1 = 0, Z_2 = 0) + \epsilon \end{split}$$

Performance in three aspects:

- Coefficient estimation
 - SE = $\|\hat{\beta} \beta\|_{2}^{2}$
- Prediction performance
 - prediction error = $\frac{1}{n} \| \boldsymbol{X} \hat{\boldsymbol{\beta}} \boldsymbol{X} \boldsymbol{\beta} \|_2^2$
- Support recovery

- F1 score =
$$\frac{2TP}{2TP + FP + FN}$$

- true positive (TP) and false positive (FP)

Estimation

		$\hat{\beta}_j! = 0$	$\hat{\beta}_j = 0$
Truth	$\beta_j! = 0$	ТΡ	FN
	$\beta_j = 0$	FP	ΤN

• Case I: effect of the SNR

- uncorrelated groups (ho=0)
- problem dimension p = 32
- sample size n = 100
- SNR $\in \{1, 2, \cdots, 5\}$
- $\alpha \in \{0.2, 0.4, 0.6, 0.8, 1\}$

Simulation experiments

Xiaoqian Liu (MDACC)

• Case II: effect of the correlation among groups

- SNR = 2
- problem dimension p = 32
- sample size n = 100
- $\alpha = 0.6$
- correlation $\rho \in \{0, 0.2, 0.4, 0.6, 0.8\}$

Simulation experiments

Xiaoqian Liu (MDACC)

• Case III: effect of the problem dimension

- uncorrelated groups (ho=0)
- SNR = 2
- sample size n = 100
- $\alpha = 0.6$
- $p \in \{32, 200, 512\}$

Simulation experiments

Xiaoqian Liu (MDACC)

Group GMC — Real data application

Table 1. Description of the birth weight data set

Name	Туре	Variable description
Birth weight	Continuous	Infant birth weight in kilograms
Mother's age	Continuous	Mother's age in years
Mother's weight	Continuous	Mother's weight in pounds at last menstrual period
Race	Categorical	Mother's race (white, black or other)
Smoking	Categorical	Smoking status during pregnancy (yes or no)
# Premature	Categorical	Previous premature labors (0, 1, or more)
Hypertension	Categorical	History of hypertension (yes or no)
Uterine irritability	Categorical	Presence of uterine irritability (yes or no)
# Phys. visits	Categorical	Number of physician visits during the first trimester $(0, 1, 2, \text{ or more})$

- Identify risk factors associated with low rank infant birth weight
- 16 covariate variables from 8 groups, 189 observations

Table 2. Summarized results for the birth weight data

	Prediction error	# nonzero groups	Excluded groups
Group Lasso	0.36	8	none
Group SCAD	0.35	8	none
Group MCP	0.35	7	# Phys. visits
Group GMC	0.35	7	# Phys. visits

э

Real data application

Group MCP

Group GMC

Xiaoqian Liu (MDACC)

33 / 40

Summary:

- A group GMC method for grouped variable selection
- Convexity preserving condition and relation to existing methods
- Algorithms for computing the solution path
- Error bounds of the (group) GMC estimator
- Simulations and a real data application

Future directions:

- Guidance on setting the matrix parameter **B**
- Extension to generalized linear models
- Computation of the (group) GMC problem

Please reach out if you have any questions

- Paper link: https://arxiv.org/abs/2111.15075
- Code link: https://github.com/Xiaoqian-Liu/GMC
- Email: xliu31@mdanderson.org
- Website: https://xiaoqian-liu.github.io/

Thank You!

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Reference I

- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American statistical Association*, 96(456):1348–1360.
- Goldstein, T., Li, M., and Yuan, X. (2015a). Adaptive primal-dual splitting methods for statistical learning and image processing. *Advances in Neural Information Processing Systems*, 28:2089–2097.
- Goldstein, T., Li, M., Yuan, X., Esser, E., and Baraniuk, R. (2013). Adaptive primal-dual hybrid gradient methods for saddle-point problems. *arXiv preprint arXiv:1305.0546*.
- Goldstein, T., Studer, C., and Baraniuk, R. (2014). A field guide to forward-backward splitting with a FASTA implementation. *arXiv eprint*, abs/1411.3406.
- Goldstein, T., Studer, C., and Baraniuk, R. (2015b). FASTA: A generalized implementation of forward-backward splitting. http://arxiv.org/abs/1501.04979.

3

- Huang, J., Breheny, P., and Ma, S. (2012). A selective review of group selection in high-dimensional models. *Statistical science: a review journal of the Institute of Mathematical Statistics*, 27(4).
- Liu, X., Molstad, A. J., and Chi, E. C. (2021). A convex-nonconvex strategy for grouped variable selection. *arXiv preprint arXiv:2111.15075*.
- Selesnick, I. (2017). Sparse regularization via convex analysis. *IEEE Transactions on Signal Processing*, 65(17):4481–4494.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.
- Wang, L., Chen, G., and Li, H. (2007). Group scad regression analysis for microarray time course gene expression data. *Bioinformatics*, 23(12):1486–1494.

イロト イヨト イヨト ・

- Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68(1):49–67.
- Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax concave penalty. *The Annals of statistics*, 38(2):894–942.