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Introduction

Estimate a sparse vector:

minimize F (β) =
1

2
∥y − Xβ∥22 + λψ(β) (1)

Statistics – penalized linear regression

- y ∈ Rn: response
- X ∈ Rn×p: design matrix
- β ∈ Rp: vector of coefficients

Signal processing – signal recovery/denoising

- y ∈ Rn: vector of observations
- X ∈ Rn×p: linear operator
- β ∈ Rp: signal vector

ψ : Rp 7→ R – penalty function promoting sparsity in β.
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Introduction

Convex penalization

Examples: Lasso (ψ(β) = ∥β∥1, Tibshirani (1996)) and its variants

Pros: no suboptimal local minimizers

Cons: underestimation of large magnitude components

Nonconvex penalization

Examples: SCAD (Fan and Li, 2001), MCP (Zhang et al., 2010)

Pros: more accurate estimation

Cons: existence of suboptimal local minimizers
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Introduction

Figure: Visualization of Lasso, SCAD and MCP (Adopted from Patrick Breheny’s
lecture on BIOS 7240).

non-differentiability at the origin → sparsity
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Introduction

Figure: Visualization of derivatives of Lasso, SCAD and MCP (Adopted from
Patrick Breheny’s lecture on BIOS 7240)

derivative → penalization rate (estimation bias)
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The GMC penalization

A convex-nonconvex strategy:

Design a nonconvex penalty but maintain the convexity of the problem.

The generalized minimax concave (GMC) penalty (Selesnick, 2017):

ψB(β) = ∥β∥1 − min
v∈Rp

{∥v∥1 +
1

2
∥B(β − v)∥22}, (2)

= L1 norm− its generalized infimal convolution

where B ∈ Rn×p is a matrix parameter.
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The GMC penalization

Figure: Visualization of the GMC penalty in the univariate case (left) and the
multivariate case (right). Adopted from Selesnick (2017).
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The GMC penalization

The optimization problem

minimize F (β) =
1

2
∥y − Xβ∥22 + λψB(β) (3)

maintains convex if
XTX ⪰ λBTB. (4)

Convexity-preserving condition for the GMC model (3)

An open question: How to set B?

B =
√
α/λX , with α ∈ (0, 1),

Xiaoqian Liu (MDACC) NESS, June 6, 2023 9 / 40



Grouped variable selection

The classical linear regression setting:

y = Xβ + ϵ

y ∈ Rn: response vector

X ∈ Rn×p: covariate variables with natural group structures
e.g. categorical data analysis

ϵ ∈ Rn: vector of noise variables with mean 0 and variance σ2

grouped variable selection & coefficient estimation
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Grouped variable selection

Convex penalization
Group Lasso (Yuan and Lin, 2006) and its variants

β̂grLasso = argmin
β∈Rp

1

2n
∥y −

J∑
j=1

Xjβj∥22+λ
J∑

j=1

Kj∥βj∥2 (5)

- β = (βT
1 , ...,β

T
J )

T ∈ Rp with βj ∈ Rpj

- Kjs: adjusting for the group sizes, e.g. Kj =
√
pj

Nonconvex penalization
Group SCAD (Wang et al., 2007)
Group MCP (Huang et al., 2012)
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The group GMC estimator

The group GMC penalty (Liu et al., 2021):

ϕB(β) =
J∑

j=1

Kj∥βj∥2 − min
v∈Rp


J∑

j=1

Kj∥vj∥2 +
1

2n
∥B(β − v)∥22

 (6)

= group Lasso− its generalized infimal convolution

- β = (βT
1 , ...,β

T
J )

T ∈ Rp

- v = (vT
1 , ..., v

T
J )T ∈ Rp

- For each j , βj ∈ Rpj , vj ∈ Rpj
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The group GMC estimator

The group GMC model:

argmin
β∈Rp

1

2n
∥y − Xβ∥22+λϕB(β), (7)

Convexity-preserving condition

XTX ⪰ λBTB (8)

Set B by

λBTB = αXTX with α ∈ [0, 1]

α : convexity-preserving parameter
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The group GMC estimator

Relations between group GMC and existing methods:

B = O (α = 0): group GMC ⇔ group Lasso

BTB is diagonal: group GMC ⇔ group MCP
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Algorithms for the group GMC model

Recast problem (7) as a saddle-point problem

min
β∈Rp

max
v∈Rp

f (β) + βTZv − g(v), (9)

where

f (β) =
1

2n
∥y − Xβ∥22+λ

J∑
j=1

Kj∥βj∥2 −
λ

2n
∥Bβ∥22,

g(v) =
λ

2n
∥Bv∥22 + λ

J∑
j=1

Kj∥vj∥2,

Z =
λ

n
BTB.

Primal-Dual Hybrid Gradient (PDHG) method
(Goldstein et al., 2013, 2015a)
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Algorithms for the group GMC model

Algorithm 1 Basic PDHG steps for problem (10)

1: Set β0 ∈ Rp, v0 ∈ Rp, σk > 0, τk > 0
2: for k = 1 to K do
3: β̂k+1 = βk − τkZTvk
4: βk+1 = argminβ∈Rp f (β) + 1

2τk
∥β − β̂k+1∥22

5: v̂k+1 = vk + σkZ (2βk+1 − βk)
6: vk+1 = argminv∈Rp g(v) + 1

2σk
∥v − v̂k+1∥22

7: end for
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Algorithms for the group GMC model

Updating βk+1 and vk+1:

βk+1 = argmin
β∈Rp

{ 1

2n
∥y − Xβ∥22−

λ

2n
∥Bβ∥22 +

1

2τk
∥β − β̂k+1∥22

}
+ λ

J∑
j=1

Kj∥βj∥2

vk+1 = argmin
v∈Rp

{ λ
2n

∥Bv∥22 +
1

2σk
∥v − v̂k+1∥22

}
+ λ

J∑
j=1

Kj∥vj∥2

group Lasso penalized problems

Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA)
(Goldstein et al., 2014, 2015b)
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Error bound for the group GMC estimator

Some definitions:

v⋆ = argmin
v∈Rp


J∑

j=1

Kj∥vj∥2 +
1

2n
∥B(β⋆ − v)∥22


S := {j : ∥β⋆

j ∥2 ̸= 0, j ∈ [J]} and Sc := [J] \ S

νj =

{
Kj + n−1∥[BTB]j ,·(β

⋆ − v⋆)∥2, j ∈ S
Kj − n−1∥[BTB]j ,·(β

⋆ − v⋆)∥2, j ∈ Sc

ν̄ := max
j∈S

νj and ν := min
k∈Sc

νk
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Error bound for the group GMC estimator

Conditions and assumptions:

X satisfies a “block-normalization” condition:

∥X·,j∥ ≤
√
n, j ∈ [J]

A1. (Subgaussian errors). The data are generated from (10) where
ϵ ∈ Rn has independent entries which are σ-subgaussian random
variables for 0 < σ <∞. That is, E(ϵi ) = 0 and for all t ∈ R,
E{exp(tϵi )} ≤ exp(t2σ2/2) for each i ∈ [n].

A2. (Convexity) The matrix B is chosen so that XTX ⪰ λBTB.

A3. (Sample size) The sample size n is sufficiently large such that
there exists a constant ξ where ν ≥ ξ > 0.
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Error bound for the group GMC estimator

Conditions and assumptions:

A4. (Restricted eigenvalue condition) For a fixed c > 1, define

Cn(S, ν, c) =∆ ∈ Rp : ∆ ̸= 0,
∑
k∈Sc

(
νk −

ξ

c

)
∥∆k∥2 ≤

∑
j∈S

(
νj +

ξ

c

)
∥∆j∥2

 .

We assume there exists a constant k > 0 such that for all n and p,

0 < k ≤ κB(S, c) = inf
∆∈Cn(S,ν,c)

∆T(XTX− λBTB)∆

2n∥∆∥22
.
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Error bound for the group GMC estimator

Theorem (Error bound for group GMC)

Let c > 1 and k1 > 1 be fixed constants. If assumptions A1–A4 hold and

λ =
4cσ

ξ

(
max
j∈[J]

√
pj
n

+

√
k1 log(J)

n

)
,

then with probability at least 1− 2 exp{−(k1 − 1) log(J)},

∥β̂(λ)− β⋆∥2 ≤
4cσ

κB(S, c)

(
ν̄

ξ
+

1

c

){(
max
j∈[J]

√
|S|pj
n

)
+

√
|S|k1 log(J)

n

}
,

where β̂(λ) is the group GMC estimator obtained from (7).
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Error bound for the group GMC estimator

Theorem (Error bound for GMC)

Let c > 1 and k2 ∈ (0, 1/2) be fixed constants. Let pj = 1 for j ∈ [p] so
that S = {j : β⋆

j ̸= 0, j ∈ [p]}. If assumptions A1–A4 hold and

λ = (cσ/ξ)
√
2 log(p/k2)/n, then with probability at least 1− 2k2

∥β̂(λ)− β⋆∥2 ≤ cσ

κB(S, c)

(
ν̄

ξ
+

1

c

)√
2|S| log(p/k2)

n
,

where β̂(λ) is the corresponding GMC estimator.
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Simulation experiments

Data generation of the ANOVA model:

Z1,Z2,Z3 and Z4 from a centered multivariate normal distribution

- Cov(Zi ,Zj) = ρ|i−j|

Z1, · · · ,Z4 are trichotomized to 0, 1 or 2

0 if smaller than Φ−1( 13 ), 1 if larger than Φ−1( 13 ), and 0 if in between

32 covariate variables from 10 groups

True regression model

y = 31(Z1 = 1) + 21(Z1 = 0) + 31(Z2 = 1) + 21(Z2 = 0)+

1(Z1 = 1,Z2 = 1) + 1(Z1 = 1,Z2 = 0)+

21(Z1 = 0,Z2 = 1) + 2.51(Z1 = 0,Z2 = 0) + ϵ
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Simulation experiments

Performance in three aspects:

Coefficient estimation

- SE = ∥β̂ − β∥22
Prediction performance

- prediction error = 1
n∥X β̂ − Xβ∥22

Support recovery

- F1 score =
2TP

2TP + FP + FN
- true positive (TP) and false positive (FP)

Estimation

β̂j ! = 0 β̂j = 0

Truth
βj ! = 0 TP FN

βj = 0 FP TN
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Simulation experiments

Case I: effect of the SNR
- uncorrelated groups (ρ = 0)
- problem dimension p = 32
- sample size n = 100
- SNR ∈ {1, 2, · · · , 5}
- α ∈ {0.2, 0.4, 0.6, 0.8, 1}
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Simulation experiments
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Simulation experiments

Case II: effect of the correlation among groups
- SNR = 2
- problem dimension p = 32
- sample size n = 100
- α = 0.6
- correlation ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}
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Simulation experiments
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Simulation experiments

Case III: effect of the problem dimension
- uncorrelated groups (ρ = 0)
- SNR = 2
- sample size n = 100
- α = 0.6
- p ∈ {32, 200, 512}
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Simulation experiments

Xiaoqian Liu (MDACC) NESS, June 6, 2023 30 / 40



Group GMC — Real data application

Identify risk factors associated with low rank infant birth weight

16 covariate variables from 8 groups, 189 observations

Xiaoqian Liu (MDACC) NESS, June 6, 2023 31 / 40



Real data application
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Real data application
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Discussion

Summary:

A group GMC method for grouped variable selection

Convexity preserving condition and relation to existing methods

Algorithms for computing the solution path

Error bounds of the (group) GMC estimator

Simulations and a real data application
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Discussion

Future directions:

Guidance on setting the matrix parameter B
Extension to generalized linear models

Computation of the (group) GMC problem
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Contact

Please reach out if you have any questions

Paper link: https://arxiv.org/abs/2111.15075

Code link: https://github.com/Xiaoqian-Liu/GMC

Email: xliu31@mdanderson.org

Website: https://xiaoqian-liu.github.io/
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Thank You!

Xiaoqian Liu (MDACC) NESS, June 6, 2023 37 / 40



Reference I

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American statistical
Association, 96(456):1348–1360.

Goldstein, T., Li, M., and Yuan, X. (2015a). Adaptive primal-dual splitting
methods for statistical learning and image processing. Advances in
Neural Information Processing Systems, 28:2089–2097.

Goldstein, T., Li, M., Yuan, X., Esser, E., and Baraniuk, R. (2013).
Adaptive primal-dual hybrid gradient methods for saddle-point problems.
arXiv preprint arXiv:1305.0546.

Goldstein, T., Studer, C., and Baraniuk, R. (2014). A field guide to
forward-backward splitting with a FASTA implementation. arXiv eprint,
abs/1411.3406.

Goldstein, T., Studer, C., and Baraniuk, R. (2015b). FASTA: A
generalized implementation of forward-backward splitting.
http://arxiv.org/abs/1501.04979.

Xiaoqian Liu (MDACC) NESS, June 6, 2023 38 / 40



Reference II

Huang, J., Breheny, P., and Ma, S. (2012). A selective review of group
selection in high-dimensional models. Statistical science: a review
journal of the Institute of Mathematical Statistics, 27(4).

Liu, X., Molstad, A. J., and Chi, E. C. (2021). A convex-nonconvex
strategy for grouped variable selection. arXiv preprint arXiv:2111.15075.

Selesnick, I. (2017). Sparse regularization via convex analysis. IEEE
Transactions on Signal Processing, 65(17):4481–4494.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B (Methodological),
58(1):267–288.

Wang, L., Chen, G., and Li, H. (2007). Group scad regression analysis for
microarray time course gene expression data. Bioinformatics,
23(12):1486–1494.

Xiaoqian Liu (MDACC) NESS, June 6, 2023 39 / 40



Reference III

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression
with grouped variables. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 68(1):49–67.

Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under
minimax concave penalty. The Annals of statistics, 38(2):894–942.

Xiaoqian Liu (MDACC) NESS, June 6, 2023 40 / 40


	Convex-Nonconvex Penalization
	Motivation
	Generalized Minimax Concave (GMC) penalty

	Group GMC for Grouped Variable Selection
	The group GMC estimator
	Algorithms for the group GMC model
	Error bound for the group GMC estimator
	Simulations and a real data application

	Discussion
	References

